Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.
نویسندگان
چکیده
Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.
منابع مشابه
Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil
Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite ...
متن کاملGenomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments
BACKGROUND Deep-sea hydrothermal vents are hotspots for productivity and biodiversity. Thermal pyrolysis and circulation produce fluids rich in hydrocarbons and reduced compounds that stimulate microbial activity in surrounding sediments. Several studies have characterized the diversity of Guaymas Basin (Gulf of California) sediment-inhabiting microorganisms; however, many of the identified tax...
متن کاملMethanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association
Methanogenesis coupled to the Wood-Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methan...
متن کاملDistribution of Bathyarchaeota Communities Across Different Terrestrial Settings and Their Potential Ecological Functions
High abundance and widespread distribution of the archaeal phylum Bathyarchaeota in marine environment have been recognized recently, but knowledge about Bathyarchaeota in terrestrial settings and their correlation with environmental parameters is fairly limited. Here we reported the abundance of Bathyarchaeota members across different ecosystems and their correlation with environmental factors...
متن کاملGenome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well
Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 350 6259 شماره
صفحات -
تاریخ انتشار 2015